Alkyl Halides

EXERCISES

ELEMENTARY

Q. 1 (3)

Q. 2 (1)

$$
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{Cl}_{2} \xrightarrow{\text { Light }} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}+\mathrm{HCl}
$$

This is an example of substitution reaction. Hydrogen atom of alkane is replaced by halogen atom.
Q. 3 (1)
Q. 4 (2)

Q. 5 (2)

$$
\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{Cl}+\mathrm{KCN}\left(\text { aq) } \rightarrow \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{~N}+\mathrm{KCl}\right.
$$

Q. 6 (4)

energy, high stability
Q. 7 (1)

Q. 8 (3)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{BrC}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{NaBr}$ Williamson's synthesis
Q. 9 (2)
Q. 10 (1)
Q. 11 (2)

Alkyl halides give alkane when react with sodium in ether. This is called Wurtz reaction.

$$
\mathrm{R}-\mathrm{Cl}+2 \mathrm{Na}+\mathrm{R}-\mathrm{Cl} \xrightarrow{\text { ether }} \underset{\text { alkane }}{R-R+2 \mathrm{NaCl}}
$$

Q. 12 (3)

$S_{N}{ }^{2}$
Q. 13 (1) $S N^{2}$ Substitution nucleophilic bimolecular order of different alkyl halides. $1^{\circ}>2^{\circ}>3^{\circ}$ $S N^{1}$ Substitution nucleophilic unimolecular order of different alkyl halides, $3^{\circ}>2^{\circ}>1^{\circ}$.
Q. 14 (3)
Q. 15 (1)
Q. 16 (1)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{PhMgBr} \longrightarrow \mathrm{PhH}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COMgBr}$

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1 (1)
Q. 2 (2) According to carboction stability
Q. 3 (2)
Q. 4 (D)
Q. 5 (1)
Q. 6 (4)
$\mathrm{R}-\mathrm{Br} \& \mathrm{R}-\mathrm{I}$ cannot not prepared by Darzen reaction because SOBr_{2} and SOI_{2} are unstable.
Q. 7 (2)
Q. 8 (3)
Q. 9 (C)

Halides are good leaving group.
Q. 10 (3)
Q. 11 (B)
$\mathrm{Ag}_{2} \mathrm{O}+\mathrm{HOH} \longrightarrow \mathrm{AgOH}$
$\mathrm{Ag}-\ddot{\mathrm{O}}-\mathrm{H}+\mathrm{R}-\mathrm{X}^{\delta+} \longrightarrow \mathrm{X}-\mathrm{OH}+\mathrm{AgX}$
Q. 12 (2)

Q. 13 (1)
Q. 14 (1)
Q. 15 (3)
Q. 16 (2)

Q. 17 (1)

Q. 18 (3)
Q. 19 (2)
Q. 20 (2)

According to stability of carbocation.
Q. 21 (1)
Q. 22 (3)

Q. 23 (2)

Inversion product will be more than retention product due to close ion pair formation.
Q. 24 (2)
Q. 25 (3)

Intermediate carbocation of ' C ' is more stable than, A, B, D compound.
Q. 26 (3)

Reactivity of alkyl halide increases with increase of stability of intermediate carbocation. Stability of carbocation of I is more than II only in 'C' option due to more hyperconjugation

Q. 27 (3)
$\mathrm{S}_{\mathrm{N}^{1}}$ Reaction intermediate (carbocation) of compound-C is unstable due to anti-aromaticity.

Antiaromatic
(Unstable)
Carbocation
Q. 28 (3)

It is SN_{2} reaction, so rate of reaction will :
Rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{Br}\right][\stackrel{\ominus}{\mathrm{OH}}]$
Q. 29 (4)

Alkyl halide which produces less stable carbocation are lens reactive towards SN^{1} - Reaction but more reactive towards SN^{2} reaction
(A)

(B)

(C)

III
(D)

Stability order of carbocation $=$ III $>$ II $>$ I $>$ IV
Q. 30 (1)
Q. 31 (3)

(III)

Greater the steric hindrance around α-carbon of alkyl halide smaller will reactivity of alkyl halide towards SN^{2} - Reaction.

Q. 32 (2)

T.S. of compound ' B ' is more stable than other.
Q. 33 (4)

Due to more resonance in compound ' D ' $\mathrm{C}-\mathrm{Cl}$ bond acquire more double bond character, so replacement of Cl^{-}becomes difficult.

Q. 34 (3)

Due to resonance stablisation of carbocation compound show SN^{1} - mechanism, due to less steric hindrance around α-carbon it also show SN^{2} mechanism.

Q. 35 (1)

Due to more steric hinderance around nucleophilic atom, the nucleophilic nature of $\mathrm{Me}_{3} \mathrm{CO}^{-}$becomes very less.

Q. 36 (3)

Q. 37 (2)

Q. 38
 Q. 39

Q. 40 (3)

Reaction intermediate carbocation of compound ' C ' is most stable than carbocation of other molecules.

Q. 41 (2)

Reaction intermediate carbocation of compound ' C ' is more stable than carbocation of other molecules
Q. 42 (1)

Alkyl halide having tendency to form more stable carbocation will have more tendency to show SN reaction by SN^{1}-Mechanism stability order of carbocation of compound II > III > IV > I due to hyperconjugation.
Q. 43 (4)

Due to double bond character of $\mathrm{C}-\mathrm{Cl}$ bond of chlorobenzene (2). The $\mathrm{C}-\mathrm{Cl}$ bond of chlorobenzene does not breack due to which precipitate of AgCl does not obtained.
Q. 44 (3)
$2 \mathrm{R}-\mathrm{X}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow \mathrm{R}-\mathrm{O}-\mathrm{R}+2 \mathrm{AgX}$
Q. 45 (2)
Q. 46 (4)
Q. 47
(4)

Q. 48 (4)

Q. 49 (1)

Lesser number of carbon atom lesser will boiling point more will volatile character

Cemdiol (Unstable)
(2)

Borodiene-Hunsdiecker's reaction

Silver salt
of carboxylic acid
Q. 52 (2)
(2)
Because reaction is unimolecular reaction $\left(\mathrm{SN}^{1}-\right.$ $R x n)$. In this reaction rate of reaction ' R ' depends only upon concentration of alkyl halide not on $\stackrel{\ominus}{\mathrm{O}} \mathrm{H}$ $\mathrm{R}=\mathrm{K}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$
Q. 53 (2) $\mathrm{S}_{\mathrm{N}} 2$ mechanism is a single step concerted process and proceed through transition state.
Q. 54 (2)
Q. 55 (2) $\mathrm{S}_{\mathrm{N}} 2$ Mechanism.
Q. 56 (2)

Product is R-2-Chlorobutane
Q. 57 (4)
Q. 58 (2)
Q. 59 (2)
Q. 62
Q. 60 (1)

Q. 61
Q. 63
Q. 64
Q. 65
Q. 66
Q. 67
Q. 68
Q. 69
Q. 70
Q. 71
Q. 72
Q. 73
Q. 74

The above elimination anti-elimination process.
(C)

Reaction occurs by Anti-Markonikov's rule.
(A)
(B)
(3)
(A)

Electrophilic nature
[Carbylamine reaction (Isocyanide test)]
Q. 75
(4)

Dichlorodifluoromethane
Q. 76
Q. 77 (A)
Q. 78 (2)

1° amine
Carbyl amine reaction (Isocyanide test)

Q. 79 (A)

JEE-ADVANCED
 OBJECTIVE QUESTIONS

Q. 1 (A)

$\mathrm{S}_{\mathrm{N}} 1$ reactions occur through the intermediate formation of carbocations.
Q. 2 (C)
Q. 3 (B)
 $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$
Unbranched 1° alcohol gives $\mathrm{S}_{\mathrm{N}} 2$ reaction with HX.
Q. 4 (B)
Q. 5 (D)
Q. 6 (B)
Q. 7 (B)
Q. 8 (C)
Q. 9 (B)

Q. 10 (B)
Q. 11 (C)

Q. 12 (A)
Q. 13 (A)
 $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}+\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}$
Q. 14 (A)
Q. 15 (A)

It is $\mathrm{S}_{\mathrm{N}} 2$ reaction.
Q. 16 (B)

It is S_{N} imech so retenion of configuration.
Q. 17 (B)

Due to formation of stable carbocation \rightarrow
(Tropyllium cation)
Q. 18
(C)
(C) $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \mathrm{Mg} \mathrm{Br}$

Q. 19 (C)
Q. 20 (B)
Q. 21 (A)
Q. 22 (D)

In aryl halides the $\mathrm{C}-\mathrm{X}$ bond has partial double bond character due to resonance so the cleavage of $\mathrm{C}-\mathrm{X}$ bond becomes difficult.

Q. 23 (A)
(A)

(B)

Q. 24 (A)

Rate of $\mathrm{S}_{\mathrm{N}} 1$ reaction is a
t Bu $\mathrm{X}>$ iso- $\mathrm{PrX}>\mathrm{EtX}>\mathrm{MeX}$
So order of activation energy
$\mathrm{t}-\mathrm{BuX}<\mathrm{iso}-\mathrm{PrX}<\mathrm{EtX}<\mathrm{MeX}$
order of ionisation energy
t BuX < iso- $-\mathrm{PrX}<\mathrm{EtX}<\mathrm{MeX}$
Q. 25 (C)
Q. 26 (B)

Q. 27 (A)

Q. 28 (D)
$\mathrm{I} \Rightarrow$ Only one T.S. So it is for $\mathrm{S}_{\mathrm{N}} 2$ and $\Delta \mathrm{H}=-\mathrm{ve}$.
$\mathrm{II} \Rightarrow$ Only one T.S. So it is for $\mathrm{S}_{\mathrm{N}} 2$ and $\Delta \mathrm{H}=+\mathrm{ve}$.
$\mathrm{III} \Rightarrow$ More than one T.S. so it is for $\mathrm{S}_{\mathrm{N}} 1$ and 1 st step is rds.
Q. 29 (D)

Q. 30 (A)

Because aromatic halides do not give S_{N} reaction in normal conditions.
Q. 31 (A)

Q. 32 (D)
Q. 33 (A)
Q. 34 (A)
Q. 35 (D)

Q. 36 (C)
Q. 37 (D)
Q. 38 (A)
Q. 39 (C)
Q. 40 (A)

[- M effect of $-\mathrm{NO}_{2}$ group at para position]
Q. 41 (D)

Q. 42 (B)

Q. 43 (A)

Q. 44 (A)
Q. 45 (C)
Q. 46 (B)

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (A,B,C,D)
Q. 2 (B,C)

Rate of solvolysis \propto Stability of carbocation.
Q. 3 (A,B,C)

In compound ' A ' \& ' C ' due to double bond character between $\mathrm{C}-\mathrm{Br}$ bond the breaking of $\mathrm{C}-\mathrm{Br}$ bond becomes tough. In compound ' B ' back side position of leaving group is not free and also T.S. in compound ' B ' is not possible So SN^{2}-Reaction.
Q. 4 (A, B)
$\mathrm{k}_{1}{ }^{\prime}<\mathrm{K}_{1} \quad \Leftarrow$ due to steric hinderence of nucleophile $\mathrm{k}_{2}{ }^{\prime}<\mathrm{K}_{2} \quad \Leftarrow$ due to steric hinderence of nucleophile
$\mathrm{k}_{1}>\mathrm{K}_{2} \quad \Leftarrow$ due to steric hinderence of $\mathrm{R}-\mathrm{X}$
$\mathrm{k}_{1}{ }^{\prime}>\mathrm{k}_{2}{ }^{\prime} \quad \Leftarrow$ due to steric hinderence of R - X
Q. 5 (A,C)

Alkyl halide having less bulkier group at target $\alpha-\mathrm{C}$ atom are more reactive towards SN^{2}-reaction.
Q. 6 (A,C)

It is an example of $\mathrm{S}_{\mathrm{N}} 2$ reaction.
Q. 7 (A,C,D)
Q. 8 (A, C)

In $\mathrm{Ph}-\mathrm{Cl}$ due to delocalisation of lone pair electron of Cl with π-electrons of phenyl ring, $\mathrm{C}-\mathrm{Cl}$ bond acquire double bond character and becomes strong.

Similarity due to delocalisation of electron $\mathrm{C}-\mathrm{Cl}$ bond in vinyl halide also acquire double character so does not break by nucleophil attack.

Q. $9 \quad(\mathrm{~B}, \mathrm{C})$

In the case ' B ' and ' C ' rearrangement does not occure in SN^{1} reaction also so we get normal product. Due to formation of T.S. In SN^{2} also we get normal product. $\mathrm{So}^{\mathrm{SN}}{ }^{1}$ and SN^{2} both product are similar \& normal.
Q. 10 (A, B)

Q. 11 (A,B)
${ }^{`} \mathrm{~S}_{\mathrm{N}}{ }^{2}$ Reaction \longrightarrow High conc. of Nucleophile
\longrightarrow Strong Nu^{Θ}
\longrightarrow Polar Aprotic solvent
\longrightarrow Rate of reaction

$$
=3^{\circ} \mathrm{RX}<2^{\circ} \mathrm{RX}<1^{\circ} \mathrm{RX}<\mathrm{CH}_{3}-\mathrm{X}
$$

Q. 12 A,B,C,D)
Q. 13 (D)
Q. 14 (A,B,D)
(A)

Gem-dichloride
(B)

Viccinal-dichloride
(D)

Q. 15 (B,C)

In first step acid base reaction takes place and after that stable carbocation intermediate is formed.
Q. 16 (C,D)
Q. 17 (A,B,C)
Q. 18 (A,B)
Q. 19 (B)
$\mathrm{I} \longrightarrow$ Inversion of configuration $\longrightarrow \mathrm{S}_{\mathrm{N}} 2$ II \longrightarrow Racemisation takes place $\longrightarrow \mathrm{S}_{\mathrm{N}} 1$

III \longrightarrow Retention of configuration $\longrightarrow \mathrm{S}_{\mathrm{N}}{ }^{\mathrm{i}}$
IV \longrightarrow Inversion of configuration $\longrightarrow \mathrm{S}_{\mathrm{N}}{ }^{2}$
Q. 20 (C)

In this reaction retention of configuration takes place so it is S_{N} i mechanism.
Q. 21 (B)

tion in configuration.
Q. 22 (C)

Q. 23 (B)

Q. 24 (A)

Rate of solvolysis \propto stability of intermediate carbcation.
Q. 25 (B)

Q. 26 (B)

Q. 27 (B)

Q. 28 (A) S,T (B) P,S,T (C) U, (D) Q, (E) T,U
Q. $29 \quad(\mathrm{~A}) \rightarrow \mathrm{q}, \mathrm{s}(\mathrm{B}) \rightarrow \mathrm{r},(\mathrm{C}) \rightarrow \mathrm{p}(\mathrm{D}) \rightarrow \mathrm{r}$

(Racemisation)
(B)

(Inversion)

(Retention)
(D)

(Inversion)
Q. 30 (A) S ; (B) Q ; (C) R ; (D) P
Q. 31 (A) 3 ; (B) 2 ; (C) 1 ; (D) 2
Q. 32 (A) 4 ; (B) 3,4 ; (C) 3 ; (D) 1,2
Q. 33 (A) Q ; (B) R ; (C) P; (D) Q
Q. 34 (A) S, (B) Q,S (C) R,S (D) P
Q. 35 (A) P,Q, (B) S (C) S, (D) P,Q

NUMERICAL VALUE BASES

Q. 1 [4]
Q. 2

What is the total number of stereo isomers possible. 3
Q. 3 [4]
Q. 4 [3]

$$
R-\mathrm{O}-\mathrm{H} \xrightarrow[\mathrm{NaOH}]{\stackrel{\stackrel{O}{\|}}{\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{Cl}}} \mathrm{~N} R-\mathrm{O}-\stackrel{\stackrel{O}{\|}}{\mathrm{C}}-\mathrm{C}_{6} \mathrm{H}_{5}
$$

i.e. $\mathrm{H}(\mathrm{Mol}$. Wt. $=1)$ is replaced by $-\stackrel{O}{\mathrm{C}}-\mathrm{C}_{6} H_{5}$ group (mol. Wt. = 105) i.e.,
there is ncreases to 104 in mol. Wt. per OH group.
\therefore No. of OH groups $=\frac{404-92}{104}=\frac{312}{104}=3$
Q. 5 [5]

There are five products formed

$$
\begin{aligned}
& \text { (d and 1) }
\end{aligned}
$$

Q. 6 [3]
Q. 7 [2]

Q. 8 [3]

Q. 9 [1]
Q. 10 [3]

Halogens attached to sp^{2} hybridised carbon cannot undergo nucleophilic substitution. Even the bridgehead halogen cannot be substituted.
Q. 11 [6]

KVPY

PREVIOUS YEAR'S

Q. 1
(C)

Given reaction $\rightarrow \mathrm{SN}^{2}$

Q. 2 (3)

R
S
Q. 3 (C)

$\xrightarrow{\mathrm{O}_{3} / \mathrm{Zn}, \mathrm{H}_{2} \mathrm{O}} 2 \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CHO}$
Q. 4 (B)

3° (halide)
Alkoxide ion is strong nucleophile and strong base \& with 3° Alkyl halide Alkenes is the major product $\left[\mathrm{E}_{2}\right.$ Elimination]
Q. 5 (C)

(I)

(II)

(III)

I and II can react with NaOH but II do not react at room temperature. I and III give reaction because at O and P position electrone withdrawing group is present.

JEE MAINS

PREVIOUS YEAR'S

Q. 1 (2)

It is free-radical substitution reaction of alkanes, so bromination takes place at benzylic carbon.
Q.2(2)
Q. 3 (4)

Rate of aromatic nucleophilic substitution reaction depends upon type of halogens and electronic effect of the group present on the ring. Electron withdrawing groups ($-\mathrm{I},-\mathrm{M}$) increases rate of reaction increases.
(3)

For substitution at allylic position in the given compound, the reagent used is $\mathrm{Cl}_{2} / \mathrm{uv}$ light. The reaction is free radical halogenation.

Q. 5 (3)
Q. 6
Q. 7 (2)
Q. 8
Q. 9 (1)

JEE-ADVANCED
 PREVIOUS YEAR'S

Q. 1 [5]

[Number of alkenes formed =5]
Q. 2 (A,C,D)
(A) compound
 , 2° benzylic may follow path SN_{1} and SN_{2}.
(C) I is
 (1° benzylic halide) and

(D) I and II follow SN_{2} also, as both are 1° halide Q. 3 [13]

(2 product)

(2 product)

Grignard Reagent

EXERCISES

JEE-MAIN
OBJECTIVE QUESTIONS
Q. 1 (B)

Flourine will not form G.R.
Q. 2 (A)

$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{2} \mathrm{OH}$

(A)
(B)
(C)
Q. 3 (C)
$\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$

Q. 4 (A)

Reactivity of Alkyl halide for
$\mathrm{R}-\mathrm{X}+\mathrm{mg} \longrightarrow \mathrm{RMgx}$
$\Rightarrow(\mathrm{R}-\mathrm{I}>\mathrm{R}-\mathrm{Br}>\mathrm{R}-\mathrm{Cl})$
Q. 5 (D)
$\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{Br} \xrightarrow[\substack{\text { (excess) } \\ \mathrm{Et}_{2} \mathrm{O}}]{\mathrm{Mg}} \mathrm{BrMgCH}_{2}-\mathrm{C} \equiv \mathrm{C}-$

Q. 6
(D)

$$
\xrightarrow[\text { ether }]{\text { 1 equivalent } \mathrm{mg}}
$$

Q. 7 (C)

(R)-2-Bromooctane

Q. 8 (C)

Q. 9 (B)
(A)

(B)

(C)

(D)

Q. 10 (D)

decreasing order of ionic character in following organo metallic compond
$\mathrm{CH}_{3}-\mathrm{Li}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Zn}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Hg}$
[ionic character \propto difference between E.N.]
Q. 11 (C)
(A)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \quad+$
$\mathrm{CH}_{3} \mathrm{MgI}$

Q. 12 (C)
(C) $\mathrm{CH}_{3}-\underset{\mathrm{O}}{\mathrm{CH}}-\mathrm{CH}_{2}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \quad \mathrm{Mg} \mathrm{Br}$

Q. $13 \begin{array}{ll}\text { (C) } \\ & \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{COOH}+\mathrm{CH}_{3} \mathrm{MgI} \rightarrow \mathrm{CH}_{4}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOMgI}\end{array}$
Q. 14 (A)

(I)

(II)
$\mathrm{CH}_{3}-\mathrm{Cl}$
(III)

(IV)
reactivity order of $\mathrm{CH}_{3} \mathrm{MgBr}$ with following compound. I $>$ IV $>$ II $>$ III
Q. 15 (D)

Q. 16 (A)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CMgCI}+\mathrm{D}_{2} \mathrm{O} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CD}$
Q. 17 (C)
$\mathrm{R}-\mathrm{Br}$ is $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$ which undergoes in Wurtz reaction to give the products $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
Q. 18 (A)

Q. 19 (A)

Q. 20 (B)

Q. 21 (C)
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{4} \xrightarrow{\mathrm{CH}_{3} \mathrm{MgBr}} 4 \mathrm{CH}_{4} \uparrow$.
It means compound (A) contains 4 acidic hydrogen.

Q. 22 (C)
(1)

(2)

(3)

(4)

Q. 23 (A)

Q. 24 (C)

$\mathrm{CH}_{4}+\mathrm{C}_{4} \mathrm{H}_{9} \stackrel{\oplus}{\mathrm{~N}} \mathrm{H} \stackrel{\oplus}{\mathrm{M}} \mathrm{gBr}$
$\frac{.595 \mathrm{gram}}{119} \Rightarrow .05 \quad .05 \mathrm{~mole} \quad .05$ mole
CH_{4} (in liter) $\Rightarrow .05 \times 22.4 \Rightarrow .112$ liter
Q. 25 (C)

$\frac{2.62}{131}=.02 \quad \frac{224 \mathrm{ml}}{22400}=.01$
$\mathrm{CH}_{2}=\mathrm{CH}_{2}$ (in liter) $\Rightarrow .02 \times 22.4 \Rightarrow 0.448$ liter
Q. 26 (A)

Q. 27 (A)

(B)

Q. 28 (A)
(I> II> III> IV)
Reactivity order of following carbonyl comp. with G.R.
(i)

(ii)

Q. 29

(B) $\mathrm{RMgx}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow \mathrm{R}-\mathrm{H}+\mathrm{Mg} \xrightarrow[\mathrm{OCH}_{5}]{\mathrm{X}}$
(C) $\mathrm{RMgx}+\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl} \longrightarrow \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{3}+$

Q. 30 (A)
(iii)

(iv)

More $\oplus \mathrm{ve}$ charge at carbon in -C - bond will be more
reactive for G.R.
(C)

(D) $\mathrm{RMgx}+$

\Rightarrow no. of G.R. (RMgx) consumed per mole compound $=(4)$
Q. 31 (B)

Q. 33 (A) Reactivity order of following with PhMgBr
(I)

(ii)

(iii)

I $>$ II $>$ III
Q. 34 (C)

Decreasing reactivity order of following comp. toward attack of G.R.
(i)

Methyl benzoate
(ii)

Benzaldehyde
(iii)

Benzoyl chloride
(iv)

III $>$ II $>$ IV $>$ I
Q. 35 (A)

Q. 36 (C)

Q. 37 (C)
Q. 37 (C)

Q. 38 (B)
(Reactivity order towards G.R. for Nu^{Θ} attack)

(B)

(C)

(D)

Q. 39 (B)

\downarrow Tautomerism

Q. 40 (A)

More Acidic H react with R Mgx and gives Alkane.
Q. 41 (A)

Q. 42 (B)
(A)

(C)

(D)

Q. 43 (A)

Q. 44 (C)

Q. 45 (B)

Q. 46 (A)
Q. 47

(B)

3 Membred ring having more angle strain than 4 membred ring
Q. 48 (A)

Total No. of R Mgx consumed in above comp $=7$
Q. 49 (C)

Q. 50 (D)
cis-alkene formed by lindlar catalyst and trans - alkene formed by $\mathrm{Na} / \mathrm{NH}_{3}$
Q. 51 (B)

Q. 52 (B)

It is birch reduction
Q. 53 (A)

It is birch reduction
Q. 54 (D)

X can be $\mathrm{H}_{2} / \mathrm{Ni}$ and LiAlH_{4}
Q. 55 (D)

All reaction are correct.
Q. 56 (D)

JEE-ADVANCED
OBJECTIVE QUESTIONS
Q. 1 (A)

(A)

Q. 2

Q. 4 (B)

Q. 5 (D)
(D) $\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{OEt}+\quad 2 \mathrm{CH}_{3} \mathrm{MgI}$ $\|$
0

Q. 6 (C)
$\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{Mg}$
$\xrightarrow{\mathrm{Et}_{2} \mathrm{O}} \mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{MgBr}$

$\bigvee+\mathrm{MgBr}_{2}$
Q. 7 (C)

Q. 8 (A)

Q. 9 (B)

(P)
$\mathrm{CH}_{3} \mathrm{Mgx}$

(Q)

(R)
Q. 10 (C)

Q. 11 (D)

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (AB)

R is $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ or $\mathrm{CH}_{3}-\underset{\mid}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

$\mathrm{Li}+\mathrm{CuI} \longrightarrow\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CuLi}(\mathrm{X})$
$\downarrow \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{2} \mathrm{Br}$
$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$
n-nonane
Q. 3 (ABD)
A, B and D are incorrect Grignard synthesis.
Q. 4 (ABC)

Active hydrogen containing functional group release CH_{4} gas with $\mathrm{CH}_{3} \mathrm{MgBr}$.
Q. 5 (A,D)

Q. 6 (A,B)

These comp react with G.R. and gives alkane which have more acidic Hydrogen
(i) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NO}_{2}$ Nitro ethane
(ii)

(B)

(C)

(D)

Acetyl Acetone

Q. 7 (B,C,D)

(A)

(B)

$\stackrel{\ominus}{\ominus} \stackrel{\oplus}{\mathrm{P}} \mathrm{MgBr}$

(D)

Q. 8 (A,B,C)

Carbonyl compd. $(x)+$ G.R. $(y) \longrightarrow \mathrm{Me}-{\underset{\mathrm{Et}}{\mathrm{OH}} \mathrm{ph}}^{\mathrm{OH}}$
(i)

(ii)

(iii)

Q. 9 (C,D)

Q. 10 (B,D)
(A)

(B)

G.R and give Alkane
(C) $\mathrm{CH}_{3}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{3}$ show NAR with

GR
(D)
given alkane
Q. 11 (A,B,C)

Q. 12

Q. 13 (C,D)

Q. 14 (B,C)

(B)

both comp having pos and show geometrical Isomer
Q. 15 (A,C,D)

Q. 17 (A,B,D)
(i)

Q. 16 (B,C)

(ii)

(i)

(x)
(y)

(ii)

Q. 18 (A,B,C)

Q. 19 (A,B,D)
$\mathrm{X}+\mathrm{y} \xrightarrow{\text { (i) } \mathrm{Et}_{2} \mathrm{O}}$ Alcohal $\xrightarrow[\text { Acetone }]{\mathrm{H}_{2} \mathrm{CrO}_{4}}$ ketone

Q. 20 (B,D)

(A)

(B)
 $\xrightarrow{(\mathrm{i}) \mathrm{Mg} / \mathrm{ether}}$

(C)

(D)

Q. 24 (ABC)

(A

(B)

$\mathrm{Me}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$
(C) $\mathrm{EtMgX}+1 / 2 \mathrm{O}_{2}$

(D) $\mathrm{MeMgX}+\mathrm{CH}_{3}-\mathrm{CHO} \longrightarrow$

(B)

Q. 22 (A,B)
(A) $\operatorname{EtMgX}+$

Q. 23 (A,B,CD)
(A) ᄂ国 $\mathrm{Mg}_{\mathrm{g}+\mathrm{O}_{2}}$

(B)

(C)

(D)

(C)

For partial reduction of alkyne lindlar catalyst and $\mathrm{Ni}_{2} \mathrm{~B}$ or P-2 catalyst used.

Q. 27 (ABC)

-COCl converts in -CHO by $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$

Q. 28 (BC)

Q. 29 (BD)

$-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}+\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{MgBr}$
Q. 30 (AB)

$\begin{array}{ll}\text { Q. } 31 & \text { (D) (B) and (C) both } \\ \text { Q. } 32 & \text { (D) (A) and (B) both }\end{array}$
Q. 33 (D) All
(31 to 33)

$\begin{array}{ll}\text { Q. } 34 & \text { (C) } \\ \text { Q. } 35 & \text { (C) } \\ \text { Q. } 36 & \text { (C) }\end{array}$

34

Total No. of R mgx consumed in one mole above comp $=6$

35
(i)
$\square-\mathrm{SH}+\mathrm{CH}_{3} \mathrm{MgBr} \longrightarrow-\stackrel{\ominus}{\mathrm{S}} \stackrel{\oplus}{\mathrm{M} g} \mathrm{Br}+\mathrm{CH}_{4}$
(ii)

(iii)

36
$\mathrm{Me} \mathrm{MgBr}+\mathrm{PhOH} \longrightarrow \mathrm{Me}-\mathrm{H}+\mathrm{Ph} \stackrel{\ominus}{\mathrm{O}} \stackrel{\oplus}{\mathrm{Mg}} \longrightarrow$
Q. 37 (C)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl} \xrightarrow[\text { ether }]{\mathrm{Mg}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgCl}$

Q. 38 (A)
$\mathrm{H}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{OC}_{2} \mathrm{H}_{5} \xrightarrow[\text { excess }]{\mathrm{RMgX}} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}-\underset{\mathrm{OH}}{\mathrm{C}}-\mathrm{R}\left(2^{\circ}\right.$ Alcohol)
Q. 39 (B)

$\xrightarrow{\mathrm{Zh}-\mathrm{Kg} / \mathrm{HCl}}$

(X)

(Y)

(40 to 42)

(Z)
Q. 43 (B)
Q. 44 (B)
(43 to 44)
Heat of hydrogenation $\propto \frac{1}{\text { stability of alkene }}$
Q. 45
(A) - (p,r); (B) - (r); (C) - (r,s); (D) - (q)

Q. 46 (A) - (p) ; (B) - (s) ; (C) - (q) ; (D) - (r)
(A) $\mathrm{RMgI}+\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N} \longrightarrow \mathrm{CH}_{3}-\stackrel{\mathrm{C}}{\mathrm{C}}=\mathrm{NMgI}$

(B) $\mathrm{RMgI}+\mathrm{S}=\mathrm{C}=\mathrm{S} \longrightarrow \mathrm{R}-\underset{\mathrm{S}}{\mathrm{C}}-\mathrm{S}-\mathrm{MgI}$

(D) $\mathrm{RMgI}+\mathrm{CH}_{2}-\mathrm{CH}_{2} \longrightarrow \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$
$\mathrm{OMgI} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ (Alcohol)
Q. 47
(A) $-(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}) ;(\mathrm{B})-(\mathrm{p}) ;(\mathrm{C})-(\mathrm{p}, \mathrm{t}) ;(\mathrm{D})-(\mathrm{p})$
LiAlH_{4} can reduce

NaBH_{4} shows selective reduction. If can reduce only keto group of the following function groups.
$\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ can reduce carbonyl and ester groups.
Keto group can reduced by MPV reduction.
Q. 48
(A) - (q) ; (B) - (p) ; (C) - (s) ; (D) - (r)

(B)

(D)

Q. 49 A-q; B-s; C-r; D-p

Q. 2	[5] All have acidic hydrogen	JEE-MAIN PREVIOUS YEAR'S	
		Q. 1	(2)
Q. 3	[3]	Q. 2	(2)
Q. 3	[3]	Q. 3	(1)
Q. 4	[3]	Q. 4	(1)
	Only except cyclopentane alkane are not hydrogenated	Q. 5	(1)
Q. 5	[3]		
	RCOOH gives H^{+}where as		

gives alcohol.
Q. 6 [2]

Q. 7 [7]
(A) 1 moleeach with $-\mathrm{OH},-\mathrm{C} \equiv \mathrm{CH}$ and $-\mathrm{COCH}_{3}$
(B) 2 mole each with COOEt and COCl Total $=7$
Q. 8 [6]
$\mathrm{R}-\mathrm{Mg}-\mathrm{X}+\mathrm{SiCl}_{4} \longrightarrow$ Alkyl chloro silane
Q. 9 [6]

Oxidation and Reduction

EXERCISES

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1 (B)
Q. 2 (C)
Q. 3 (C)
Q. 4 (D)
Q. 5 (A)
Q. 6 (A)

Q. 7 (C)
Q. 8 (B)
Q. 9 (D)

Q. 18
$\overbrace{\mathrm{COOH}}^{\mathrm{COOH}}$
Q. 19 (A)

Rate of hydrogenation will decreases on increasing steric hinderance at π bond.
Q. 20 (A)

(A) $\mathrm{NaBH}_{4} / \mathrm{EtOH}$
(B) $\mathrm{LiAlH}_{4} / \mathrm{THF}$
(C) $\mathrm{Na} / \mathrm{EtOH}$
(D) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$
(D)
-COCl converts in -CHO by $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$ (Rosenmund reduction)
Q. 22 (B)
Q. 23 (B)

Wolf-kishwner reduction $\left(\mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{KOH}\right)$ give alkane after reduction of carbonyl compound.

Q. 24 (D)

All reagents are used to convert $>\mathrm{C}=\mathrm{O}$ to $>\mathrm{CH}_{2}$
(C)

Esters are not reduced by $\mathrm{NaBH}_{4},>\mathrm{C}=\mathrm{O}$ (carbonyl) change to $-\mathrm{CH}(\mathrm{OH})$ - by use of NaBH_{4}
Q. 26 (B)
 unstabiliity.
Q. 27

product
(B)

Q. 28 (D)

It is fact.
Q. 29 (A)
Q. 30 (D)
cis-alkene formed by lindlar catalyst and trans - alkene formed by $\mathrm{Na} / \mathrm{NH}_{3}$
Q. 31 (D)

Reactivity order for catalytic hydrogenation is

(B) $\mathrm{R}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{R}>\mathrm{R}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{O}-\mathrm{R}$
(C) $\mathrm{R}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{R}-\mathrm{CH}=\mathrm{CH}_{2}$
(D)

Q. 32 (B)

$$
\mathrm{Ph}-\mathrm{COOH} \xrightarrow[\text { Reduction }]{\mathrm{LiAlH}_{4}} \mathrm{Ph}-\mathrm{CH}_{2} \mathrm{OH}
$$

Q. 33 (A)
Q. 34 (B)
Q. 35 (A)
Q. 36 (C)
Q. 37 (B)
Q. 38 (B)
Q. 39 (C)

$$
\mathrm{R}-\mathrm{NC} \xrightarrow{\mathrm{H}_{2} / \mathrm{Pt}} \mathrm{R}-\mathrm{NH}-\mathrm{CH}_{3}
$$

Q. 40 (A)
Q. 41 (A)
Q. 42 (D)
Q. 43 (D)
 $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
Q. 44 (B)

Q. 45 It is fact.
Q. 46 (D)

Tollen's reagent is ammonical silvernitrate, which has the species $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$.
Q. 47 (C)

Fehlings solution is alkaline solution of CuSO_{4} with rochell salt i.e. sodium potassium tartarate.
Q. 48 (D)

Q. 49 (D)

Terminal alkyne gives white ppt with ammonical silver nitrate.

while propene does not give any reaction with ammonical AgNO_{3} due to absence of acidic hydrogen.

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1

(D)

In (a), (P) reduces Tollens reagent, since it contains (-CHO) group.
In (b), (P) gives iodoform test, since it contains (MeCO-) group.
In (c), (P) forms dioxime, since it contains (-CHO)

In (d), (P) does not gives cerric ammonium nitrate test, since this test is given by alcohols and (P) does not contain an alcoholic group. So the answer is (D).

Q. 2 (C)

(B)

(C)

(D)

Q. 3 (C)
Q. 4 (C)
Q. 5 (C)

Acetaldehyde reacts with Tollens, Schiff's, and Fehling's solution but acetone does not. But with H_{2} / Ni both reacts.
Q. 6 (B)
Q. 7 (D)

colour
(A)
(B)
(C)
Q. 8 (C)

Acidic KMnO_{4} breaks the double bond and also oxidises 2° alcohol to ketone, whereas PCC only oxidises 2° alcohol to ketone. So the answer is (C).
Q. 9 (D)

Only primary and secondary alcohols will be able to change the colour as they will be easily oxidised by $\mathrm{CrO}_{3} /$ aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Q. 10 (D)
Q. 11 (B)

Rearrangement of 3° allylic alcohol.

Q. 12 (A)

Q. 13 (D)
Q. 14 (C)

Q. 15 (B)

Syn addition with Baeyer's Reagent, So cis will form meso compound however peroxy acid in anti addition gives enantiomer.
Q. 16 (A)

Q. 17 (B)

Oppenauer's oxidation, oxidised secondary alcohol into ketone and there is no effect on double bond.
Q. 18 (C)
(P) on hydrolysis gives propanedioic acid and methanol. Propanedioic acid on strong heating gives acetic acid which when reduced with Red P/HI gives ethane.
Q. 19 (A)

It is birch reduction
Q. 20 (B)

I

III
Q. 21 (D)

Synaddition of H_{2} on double bond and racemic mixture obtained
Q. 22 (B)
Q. 23 (B)

It is birch reduction.
Q. 24 (A)
Q. 25 (C)
Q. 26 (B)

(B)

Q. 27 (B)

Reduction with Wilkinson's catalyst is homogeneous
Q. 28 (A)
Q. 29 (D)

Q. 30 (D)

Q. 31 (D)

$$
\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \xrightarrow{\mathrm{Na} / \mathrm{NH}_{3}(\ell)}
$$

(Cis)

Q. 32 (B)

Q. 33 (B)

Q. 34 (C)

Q. 35 (C)

Only C on hydrolysis gives $\mathrm{CH}_{3}-\mathrm{OH}$ and

Q. 36 (D)
Q. 37 (B)

Q. 38 (B)

Q. 39 (C)

All optically inactive products

Q. 40 (A)

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. $1 \quad$ (A,B,C,D)

HIO_{4} is a mild oxidising agent.
Cyclic intermediate is formed with vicinal diols.
Q. 2 (A,B,C)

Q. 3 (B,C)

trans
meso
Q. 4 (A,C)
(A)

(B)

(C)

(D)

and

Q. 5 (A,B,C,D)

For partial reduction of alkyne lindlar catalyst and $\mathrm{Ni}_{2} \mathrm{~B}$ (P-2 catalyst) are used.
Q. 6 (A,B)
Q. 7 (C)
Q. 8 (\mathbf{A}, \mathbf{B})
Q. 9 (B,C)

When alcohols are passed into Cu tube at $300^{\circ} \mathrm{C}$;
primary alcohol \rightarrow Aldehyde
Secondary alcohol \rightarrow Ketone
Tertiary alcohol \rightarrow Alkene
When alcohols are treated with PCC then ;
primary alcohol \rightarrow Aldehyde
Secondary alcohol \rightarrow Ketone
Tertiary alcohol \rightarrow No reaction
Q. 10 (A, B, C)

Self explanatory.
Q. 11 (A,B,C,D)
Q. 12 (D)
LiAlH_{4} raduces aldehydes, ketones as well as esters. $\mathrm{Pd} / \mathrm{H}_{2}$ reduces aldehyde \& ketone, but ester is practically left behind. Hence (D).
Q. 13 (C)
NaBD_{4} can reduce aldehyde and ketone, but not ester. Hence ester remains unchanged.

Q. 14	(A)
Q. 15	(B)
Q. 16	(A)
Q. 17	(D)
Q. 18	(A)

(d and I) (O.A.)
(D) (Meso) (O.I.A.)

$2 \mathrm{~mol} \mathrm{Et}-\mathrm{CH}=\mathrm{O}$
(E)
Q. 21 (A,D)
Q. 22 (A) - (q) ; (B) - (s) ; (C) - (p, s) ; (D) - (q, s)
Q. 23 (A) - (p) ; (B) - (q) ; (C) - (t) ; (D) - (s).
Q. $24 \mathrm{~A} \rightarrow \mathrm{~s} ; \mathrm{B} \rightarrow \mathrm{r} ; \mathrm{C} \rightarrow \mathrm{p} ; \mathrm{D} \rightarrow \mathrm{q}$

NUMERICAL VALUE BASED

Q. 1
 [2]

Q. 2 [3] (i, ii, iv)

Correct reaction are (i), (ii), (iv)
(iii) Benzylic hydrogen is absent
(v) Racemic mixture is formed
Q. 3 [3]
(i) $\stackrel{2 \mathrm{H}-\mathrm{C}-\mathrm{H}}{\mathrm{O}}+\mathrm{CO}_{2}+3 \mathrm{HCOOH}$
(ii) $\stackrel{\mathrm{H}-\mathrm{C}-\mathrm{H}}{\mathrm{O}}+5 \mathrm{HCOOH}$
Q. 4 [4]

Q. 5 [5]
(P) $\xrightarrow{\mathrm{Na} / \mathrm{NH}_{3}(\ell)}$

D.u. $=\mathrm{X}=4 ; \mathrm{Y}=1$
Q. 6 [4]

All four reactions gives $\mathrm{CH}_{3}-\mathrm{CHO}$ as major product.
Q. 7 [4]

All four reactions gives $\mathrm{CH}_{3}-\mathrm{CHO}$ as major product.
Q. 8 [3]
$\mathrm{x}=1$ (meso)
$y=2$ (racemic mixture)

[3]
(a)

(b)

(c)

(d)

(e)

Q. 10 [6]

Q. 11

Q. 12 [4]

Carbonyl compound as well as acid and acid derivatives are reduced by LiAlH_{4}.
Q. 13 [3]
Q. 14 [4]
Q. 15 [2]
Q. 16 [4]

Fructose $\xrightarrow{\mathrm{HIO}_{4}} 2 \mathrm{HCHO}+4 \mathrm{HCOOH}$

JEE-MAINS

PREVIOUS YEAR'S

Q. 1 (4)
Q. 2 (3)
Q. 3 (3)

JEE-ADVANCED

PREVIOUS YEAR'S
Q. 1 (A) (C) (D)

Q. 2 [5]
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}, \mathrm{M}_{\mathrm{w}}=12 \mathrm{n}+2 \mathrm{n}+16=100$
$\therefore 14 \mathrm{n}=84$

$$
\therefore \mathrm{n}=6
$$

Six such ketones exist :

Alcohols and Ethers

EXERCISES

ELEMENTARY

Q. 1
Q. 2
(2)

Q. 3 (4)
Q. $4 \quad$ (4)

As the surface area and molecular weight increases solubility decreases. So t-butyl alcohol has least surface area hence its solubility is highest.
Q. 5 (1)

Due to H -bonding glycerol boiling point is more than propanol.
Q. 6 (3)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow[170^{\circ} \mathrm{C}]{\text { Conc. } \mathrm{H}_{3} \mathrm{SO}_{4}} \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$
Q. 7 (1)
Q. 8 (4) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ all can act as dehydrating agent.
Q. 9 (3)

Primary alcohol produces turbidity with lucas reagent most slowly i.e. Isobutyl alcohol.
Q. 10 (2)

Alcohol and Acid react with sodium
Alcohol react with sodium to give H_{2} gas
Acid react with sodium to give carbonic acid Ether donot react with sodium
Q. 11 (2)
Q. 12 (1)
Q. 13 (2)

Q. $14 \quad$ (2)
Q. 15 (3)

It is an example of Biomolecular neucliophilic substitution reaction. i.e. SN^{2}.
Q. 16 (2)

Q. 17 (1,4)
Q. 18 (2)
Q. 19 (2)

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (4)

Due to less-effective hydrogen bonding solubility of $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ becomes minimum.
Q. 2 (4)

Acidic nature $\propto \frac{1}{\text { pka - value }}$
Acidity of $\mathrm{CH}_{3}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH} \text { is minimum due to }}$ +I -effect isopropyl group.
Q. 3 (2)
ue to effective hydrogen bonding boiling point of unbranched alcohol is more than branched chain alcohol.
Q. 4 (1)
Q. 5 (4)
$\mathrm{CH}_{3}-\mathrm{NH}_{2} \xrightarrow[\substack{\mathrm{O}-4^{\circ} \mathrm{C} \\-\mathrm{H}_{2} \mathrm{O}}]{\mathrm{HNO}_{2}+\mathrm{HCl}}\left\{\mathrm{CH}_{3} \stackrel{\stackrel{\ominus}{\mathrm{~N}}}{\mathrm{~N}} \equiv \mathrm{~N}\right\} \stackrel{\ominus}{\mathrm{Cl}} \longrightarrow \stackrel{\oplus}{\mathrm{CH}_{3}} \xrightarrow{\mathrm{HOH}} \mathrm{CH}_{3}-\mathrm{OH}$

Q. 6 (2)

Q. 7 (2)

Q. 8 (1)

Melting point \& boiling point of branched chain alcohols are less than unbranched chain alcohol.
Q. 9 (4)
'Due to polar $-\stackrel{\delta-}{\mathrm{O}-\mathrm{H}-\mathrm{H}}$ bond
Q. $10 \quad$ (2)

Q. 11 (1)

Compound which can form hydrogen bond with water are soluble and lower alcohols forming effective hydrogen bond with $\mathrm{H}_{2} \mathrm{O}$. So soluble in $\mathrm{H}_{2} \mathrm{O}$.

Q. 12 (2)

Due to presence of lone pair electron on O -atom
Q. 13 (2) Ethers do not form hydrogen bond.
Q. 14 (2)
Q. 15 (3)

$$
\mathrm{R}-\mathrm{Br}+\stackrel{\oplus}{\mathrm{NaOR}} \mathrm{R}^{\prime} \longrightarrow \underset{\substack{\text { Unsymmetrical } \\ \text { ether }}}{\mathrm{R}-\mathrm{O}-\mathrm{R}^{1}+\mathrm{NaBr}}
$$

Q. 16 (2)
Q. 24 (3)

$$
\mathrm{R}-\ddot{\mathrm{O}}-\mathrm{R} \xrightarrow{\mathrm{H}-\mathrm{I}} \mathrm{R}-\mathrm{I}+\mathrm{HO}-\mathrm{R}
$$

Q. 25 (4)

Q. 17 (3)

Q. 18 B

$$
\begin{aligned}
& \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \& \mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \\
& \text { Diethylther } \\
& \text { Methylpropylether }
\end{aligned}
$$

(because alkyl group attached with'O' in both ether are different)

Q. 19 (4)

Due to electron releasing nature of ethyl group.
Q. 20 (4)

Q. 21 (3)

Reaction of $\mathrm{R}-\mathrm{X}$ with KCN does not produce ether.
Q. 22 (3)

B

> x.l

Q. 26 (2)

Q. 27 B

Decomposition of ether by HI or HBr is called Ziesel's method.
Q. 28 (3)

Q. 29 (3)

Q. 30 (2)

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\substack{\text { Sodium ethoxide } \\ \text { (As-Nucleophile) }}}{\mathrm{Br}+\mathrm{NaOC}_{2} \mathrm{H}_{5}} \underset{\text { Diethylether }}{\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}_{2}-\mathrm{C}_{2} \mathrm{H}_{5}}
$$

Q. 31 (4)

Reactivity order of alcohol with Lucas reagent $3^{\circ}>2^{\circ}>1^{\circ}$ alcohol.
Q. 32 (4)

Order of alcohal towards esterification
$\mathrm{CH}_{3}-\mathrm{OH}>1^{\circ}$ alcohal $>2^{\circ}$ alcohal $>3^{\circ}$ alchoal.
Q. 33 (2)

Q. $34 \quad$ (1)

Q. 35 (2)

Q. 41 (1)
$\mathrm{PCl}_{3}, \mathrm{PCl}_{5}, \mathrm{SOCl}_{2}, \mathrm{HCl}$ can replace - OH group but not Cl_{2}.

$$
\begin{equation*}
\mathrm{R}-\mathrm{O}-\mathrm{H}+\mathrm{Na} \longrightarrow \mathrm{R}-\stackrel{\ominus}{\mathrm{O}} \stackrel{\oplus}{\mathrm{Na}}+1 / 2 \mathrm{H}_{2}(\uparrow) \tag{4}
\end{equation*}
$$

in above reaction molecular weight of alcohal increase by $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}=42$.
Q. 44 2)
$\mathrm{SO}_{2} \mathrm{Cl}_{2}$ cannot replace - OH group.
Q. 45 (2)

This is acetylation reaction.
Q. 46 (1)
(Williumson's synthesis)

3° - alkyl halide
Q. 47 (4)

Q. 48 A

Q. 49 (3)

Q. 50 (2)

Q. 51 (1)

This is a method of addition of HOH molecule by Anti-Markovnikov's Rule.
Q. 53 (2)

$-\mathrm{R}=-\mathrm{CH}_{3}$
Compound $=$ Acetic acid
Q. 54 (3)
Q. 55 (1)

Q. 56 (1)
Q. 57 (3)

Q. 58 (3)

Q. $59 \quad$ (2)

Q. 60 (3)

Q. 61 (2)

Q. 62 (4)
Q. 63 (4)
NaBH_{4} are weak reducing agent so only acid chloride are reduced in alcohal.
Q. 64 (4)
$\mathrm{CH} \equiv \mathrm{CH}, \mathrm{CH}_{2}=\mathrm{CH}_{2}$, $\mathrm{Et}-\mathrm{OH}$ are not react with NaOH .
Q. 65 (2)

Q. 66 (1)

$$
\underset{\text { Alcohol }}{\mathrm{R}-\mathrm{O}-\mathrm{H}+\mathrm{H}-\mathrm{O}-\mathrm{R}} \underset{\text { Alcohol }}{\mathrm{H}^{+} / \Delta} \underset{\substack{\mathrm{HOH}}}{\substack{\text { Anhydride of alcohol } \\ \text { (Ether) }}} \mathrm{R}-\mathrm{O}-\mathrm{R}
$$

JEE-ADVANCED
 OBJECTIVE QUESTIONS

Q. 1 B

Q. $2 \quad$ A

Q. 3 B

Q. $4 \quad$ A
Q. 5 A

Q. 6 A

PI_{3} reduces glycol to form ethylene.
Q. 7 D

Q. 8 B

Q. 9 A

Q. 10 D

$\xrightarrow[\substack{\downarrow \\ 5}]{\mathrm{XHIO}} 5 \underset{\substack{\| \\ 0}}{\mathrm{H}-\mathrm{C}-\mathrm{OH}}+\underset{\substack{\| \\ 0}}{\mathrm{H}-\mathrm{C}-\mathrm{H}}$

$$
\text { Value of } x \Rightarrow 5
$$

(ii) \mathbf{C}
(iii) \mathbf{A}

Total no. of HCHO in $\mathrm{A}=1$
Q. 11 C

$A=$

Q. 12 B

Q. 13 A
Q. $14 \quad \mathrm{~A}$

Q. 15 B

Q. 16 B

Q. 17 B

(B) CH_{3}
Q. 18 C

1- Propanol (1°)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$
Methoxyethane
(2)

$2-\operatorname{Propanol}\left(2^{\circ}\right)$

2-methyl-1-propanol $\left(1^{\circ}\right)$

2-propanol (2°)

2-methyl-2-propanol (3°)
Q. 19 C

Q. 20 D

Q. 21 D

Q. 22 D

Q. 23 B

It is oxymercuration \& demercuration reaction.

Q. 24 (C)

Malapharad oxidation

Number of HIO_{4} required are equal to total number of viccinal diol group $\binom{\stackrel{\mid}{\mathrm{C}}-\mathrm{OH}}{-\underset{\mid}{\mathrm{C}}-\mathrm{OH}}$
Q. 25 (A)

(b) $\begin{gathered}\mathrm{CH}_{1}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{CH}_{3}-\mathrm{CH}_{1} \\ \text { OH } \\ \text { (chiral) }\end{gathered}$

Q. 26 (D)

$\xrightarrow{\mathrm{P}+\mathrm{HI}} \mathrm{C}_{6} \mathrm{H}_{14}$ (n-Hexane)
Q. 27 (B)

Oppenauer's oxidation, oxidised secondary alcohol into ketone and there is no effect on double bond.
Q. 28 (C)

Acidic KMnO_{4} breaks the double bond and also oxidises 2° alcohol to ketone, whereas PCC only oxidises 2° alcohol to ketone. So the answer is (C).
Q. 29 (D)

Only primary and secondary alcohols will be able to change the colour as they will be easily oxidised by $\mathrm{CrO}_{3} / \mathrm{aq} . \mathrm{H}_{2} \mathrm{SO}_{4}$.
Q. 30 (D)
Q. 31 (C)
Q. 32 (B)
Q. 33 (B)

Rearrangement of 3° allylic alcohol.

Q. 34 (B)

\qquad

Racemic Mixture
Q. 35 D

Q. 36 B

Q. 37 B

Q. 38 A

Q. 39 D

Q. 41 B

$\downarrow \Delta$
Q. 42 B

Q. 43 C
Q. 44 B

Q. 45 A

Q. $46 \quad$ A
Q. 47 B

(A)
(B)
Q. 48 D

Due to resonance in vinyl chloride $\mathrm{C}-\mathrm{Cl}$ bond acquire double bond character so does not break $\oplus \ominus$ by NaOMe]

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1
(A,B,C)
$\mathrm{A} \mathrm{CH}_{3} \mathrm{MgI}+\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\left.\right|_{\mathrm{OH}} ^{\mathrm{C}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}}$
$\mathrm{B} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgI}+\mathrm{CH}_{3}-\mathrm{C}_{\mathrm{O}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Q. 2 (A,B,C)

Q. 3 (A,C,D)

A

B

C

D

Q. 4 (A,B,C)

Q. 5 (B)
β - hydroxy carbonyl and cis 1-2, diol can be cleave by HIO_{4}.
Q. 6 (B,D)

Q. 7 (A,C,D)

Q. 8 (A,B,D)

- Electrophilic addition reaction.
- Acid catalysed Hydration will give rearrange product.
- In cyclohexene reaction occur in either HBO or oxymercuration - demeruiration or acid catalysed hydrolysis product is always cyclohexanol

Sol.- Compound A is unsaturated.

- Compound A is alkyne.

(B)
Q. 10 (A,,C,D)
- Alcohols have -OH group.
- Amide $\left(-\stackrel{\mathrm{\|}}{\mathrm{C}}-\mathrm{NH}_{2}\right)$ does not give alcohol on reduction.
Q. 11 (A,B,C)
- Electrophilic addition reaction, oxidation \& SNRxn
$\mathrm{A} \rightarrow \mathrm{HBO}$
B \rightarrow Oxymeruration Demercuration
$\mathrm{C} \rightarrow$ Epoxidation
D \rightarrow SN-Reaction of aromatic compound.
(A)

(B)

(C)

(D)

Q. 12 (A,B,C,D)
- Tilden Reagent is NOCl.
- Conversion of (II) \rightarrow (III) in value diazzolization.

$$
\begin{array}{ll}
\quad \mathrm{R}^{\oplus}+\mathrm{N}_{2}(\uparrow)+\mathrm{Cl}^{\ominus} \longleftarrow[\mathrm{R}-\stackrel{\oplus}{\mathrm{N}} \equiv \mathrm{~N}\} \\
\begin{array}{ll}
\mathrm{R}^{\oplus}+\mathrm{Cl}^{\ominus} \\
\text { ride) }
\end{array} & \rightarrow \mathrm{R}-\mathrm{Cl} \text { (Alkyl chlo- } \\
\mathrm{R}^{\oplus}+\mathrm{HOH} & \rightarrow \mathrm{R}-\mathrm{Cl} \text { (Alcohol) } \\
\mathrm{R}^{\oplus}+\mathrm{ROH} & \rightarrow \mathrm{R}-\mathrm{O}-\mathrm{R} \text { (Ether) } \\
\mathrm{R}^{\oplus}+\stackrel{\ominus}{\mathrm{N}} \mathrm{NO}_{2} & \rightarrow \mathrm{R}-\mathrm{NO}_{2} \text { (reaction) }
\end{array}
$$

(where $-\mathrm{R}=-\mathrm{C}_{2} \mathrm{H}_{5}$ in above)
Q. 13 (A,C,D)

Q. 14 (A,B,C,D)

Q. 15 (A,C,D)

Q. 16 (B,D)

(X)
(Y)

Q. 17 (A,D)

Q. 18 (B)

(P)

Q. 19 (B)

(Q)

Q. 29 (A)
Q. 30 (A)
Q. 31 (D)
Q. 32 (A)
Q. $33 \quad \mathrm{~A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q}, \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{S}$
Q. 34 (A) P, R, S; (B) Q, S; (C) T; (D) P, R, S]
Q. 35 A-P,S; B-P,S; C-P,S; D-R,S; E-R

Q. 21 (D)

E' reaction favoured at high T \& removal of alkene; Equilibrium reaction, forced in forward direction by removal of alkene; Le-chatlier's principle
Q. 22 (D)

10
Total $\alpha \mathrm{n}=19$]
Q. 23 (A)

Stability of carbocation formed;

Resonance stabilised.]
Q. 24 (C)
Q. 25 (D)
Q. 26 (D)

$\mathrm{Z}=$
OH
Q. 36 (A) P (B) Q (C) R
Q. 37 A-P; B-Q; C-R; D-S

Q. 27 (D)
Q. 28 (C)

Q. 38 (A) Q, S; (B) Q, S; (C) P, R, T (D) P, R, T

Q. 39 A-P,R,Q; B-P,R,Q; C-P,R,Q; D-S

$\mathrm{A} \mathrm{EtOH}+\mathrm{CH}_{3}-\underset{\|}{\mathrm{C}}-\mathrm{Cl} \xrightarrow[\Delta]{\text { Pyridine }} \mathrm{CH}_{3}-\mathrm{C}-\mathrm{OEt}+\mathrm{HCl}$
Esterification Reaction
Acetylation Reaction
M.F. of alcohol increase by $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$

$\mathrm{CEt}-\mathrm{OH}+\mathrm{CH}_{3}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{OH} \xrightarrow[\Delta]{\mathrm{H}^{\oplus}} \mathrm{CH}_{3}-\underset{\|_{\mathrm{O}}^{\mathrm{C}}}{\mathrm{C}}-\mathrm{OEt}$
D Et $-\mathrm{OH}+\mathrm{Et}-\mathrm{OH} \xrightarrow[\Delta]{\mathrm{H}^{\oplus}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
M.F of alcohol increase by 2.8

NUMERICAL VALUE BASED

Q. 1

of chiral carbon is 3
\Rightarrow optical isomer $=2^{3}=8$.
Q. 2 [2]
Q. 3 [3]
Q. 4 [1]
(Only reaction with HBr form carbocation)
Q. 5 [1]
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow[\text { IodoformTest }]{\mathrm{NaOH} / \mathrm{I}_{2}} \mathrm{CHI}_{3}$ (yellow ppt)

$$
\mathrm{CH}_{3} \mathrm{OH} \xrightarrow{\mathrm{NOH} / \mathrm{I}_{2}} \text { No. ppt. }
$$

Q. 6 [2]
Q. 7 [2]
Q. 8 [4]

The compound does not react with Na , thus it is not an alcohol. It is saturated, as it does not add up Br_{2}. With excess of HI produces only one iodide, thus it is a symmetrical ether.
$\mathrm{R}-\mathrm{O}(\mathrm{X})-\mathrm{R} \xrightarrow[(\mathrm{Y})]{2 \mathrm{HI}} \underset{\mathrm{H}}{2 \mathrm{RI}}+\mathrm{H}_{2} \mathrm{O}$
$\underset{(\mathrm{Y})}{\mathrm{RI}} \xrightarrow{\text { Hydrolysis }} \mathrm{R} \underset{(\mathrm{Z})}{-\mathrm{OH}} \xrightarrow{\text { Oxidation }} \operatorname{Acid}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
Hence

$$
\mathrm{R}-\mathrm{OH}(\mathrm{Z}) \text { is } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

$$
\mathrm{RI}(\mathrm{Y}) \text { is } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}
$$

$$
\mathrm{R}-\mathrm{O}-\mathrm{R}(\mathrm{X}) \text { is } \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}
$$

(X) Contains 4 carbon atoms.
Q. 9 [2]

Q. 10 [2]

In water only ethanol will dissolve. With Na , only $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ will liberate H_{2} gas.
These observation are absent with diethyl ether. With hot PCl_{5} both will produce $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
So, water and sodium can be used for distinguishing $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$.
Q. 11 [3]

KVPY

PREVIOUS YEAR'S

Q. 1 (2)

Q. 2 (1)

Ethene (gas)
Q. 3 (2)

Q. 4 (C)

Alcohol forms hydrogen bonding so their boiling point is higher. Ether can not form H bond so its boilling point is lowest \therefore lowest boiling point.
Q. 5 (A)

Q. 6 (C)

If one of the alkyl group is 3°. Then mechanism is SN_{1} and nucleophile attach to the carbon where carbocation is more stable.

Q. 8 (1)

Phenolic- OH does not react with HI and benzylic -Ohaving - CN attached will react with HI by $\mathrm{S}_{\mathrm{N}} 2$ mechanism.

JEE-MAINS

PREVIOUS YEAR'S

Q. 1
Q. 2

(Saytzeff product)

Q. 3 (2)
Q. 4
Q. 5
Q. 6
Q. 7
Q. 8
Q. 9
Q. 10

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (B)

(An acetal)
Q. 2 (B)

All the three reaction are $N_{N} 2$ so X is

Q. 3 (6.00)

total 6 - OH group present in a molecule of the major product.

Phenol

EXERCISES

ELEMENTARY

Q. 1 (3)

Q. 2 (2)

Q. 3 (1)
Q. 4 (4)
Q. $5 \quad$ (1)

p-hydroxy azobenzene
(orange dye)
This is an example of coupling reaction
Q. 6 (4)
Q. 7 (1)

Correct order of dehydration in alcohols $3^{\circ}>2^{\circ}>$ 1°.
JEE-MAIN
OBJECTIVE QUESTIONS
Q. 1 (2)

Q. 2 (1)
Q. 3 (3)
(O-O-CH3 $\underset{\text { (Anisol) }}{\text { Methoxybenzene }}$

Q. $4 \quad$ (3)

Electron in π bonds are π electrons \& lone pair electrons which delocalises in the process of resonance are also counted as π electrons.
Q. $5 \quad$ (2)

Due to presence of polar $\underset{(-\mathrm{O}-\mathrm{H})}{\delta-}$) bond phenol can form hydrogen bond.
Q. 6 (2)
Q. 7 (4)
Q. 8

Q. 9 (4)
Q. 10 (4)
Q. 11 (1)
Q. 12 (3)

Q. $13 \quad$ (3)

Q. 14 (3)

Q. 15 (3)

Reimer-Tiemann reaction

Q. 16 (4)

[Low B.P.due to intramolecular H-Bonding]
Q. 17 (1)
Q. 18 (2)

Q. 19 (1)
NaHCO_{3} does not give effervescence with phenol. But ortho-para nitro phenols give effervescence with NaHCO_{3}.

Q. 20 (3)

 Chlorobenzene has π bond in aromatic ring.Q. 21 (2)

Salicylic acid on treatment with bromine water give 2,4,6-tribromophenol.
Q. 22 (1)

Salicydehyde is o-hydroxybenzaldehyde. It is volatile as it has intramolecular hydrogen bonding.
Q. 23 (4)

Due to intramolecular hydrogen bond (chelation) boiling point of o-nitrophenol is less than pnitrophenol. So they can be separated by distillation.

Q. 24 (1)

Electron with drawing ($-\mathrm{m} /-\mathrm{R}$) nature of $-\mathrm{NO}_{2}$ group increases acidic nature of p -nitrophenol.
Q. $25 \quad$ (4)

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (B)

(Not hydroxybenzene)
Phenol

Q. 2 (C)

Q. 3 (A)

Q. 4 (D)

Q. 5 (A)

(Dow's proces)
Q. 6 (D)
Q. 7 (B)
(A)

(C)

(D)

Q. 8 (D)

(i) Migration of -Ph
(ii) $\mathrm{H}_{3} \mathrm{O}^{\oplus}$

Q. 9 (C)

Q. 10 (A)

Q. 11 (C)
Q. 12 (C)

Q. 13 (D)

See Reimer - Tiemann reaction.
Q. 14 (C)

Q. 15 (C)
Q. 16 (D)

p-hydroxyazobenzene

Q. 17 (C)

It is an example of alkylation of phenol.
Q. 18 (B)

If bromine in acetic acid is used, bromination takes place without decarboxylation.

Q. 19 (B)

Q. 20 (D)

Electrophilic substitution reaction.
Q. 21 (C)
(X)

(Y)

Attack will take place on the ring which is more electron rich. Benzene with -OH group attached is more elecron rich.
Q. 22 (A)
Q. 23 (A)

Orientation decided by more activating - OH group [+M effect $]$.
Q. 24 (A)

Q. 25 (B)
Q. 26 (C)

Acidic nature of o-nitrophenol is less than $\mathrm{H}_{2} \mathrm{CO}_{3}$. SO it does not react with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.
Q. 27 (C)

Due to high acidic nature, 2, 4, 6-trinitro phenol (picric acid) gives efferevescence with NaHCO_{3}.
Q. 28 (A)

Due to more acidic nature of benzoic acid, benzoic acid show efferevecense due to release of CO_{2} (\uparrow) from NaHCO_{3}.
Q. 29 (D)

Salicylic acid undergoes decarboxylation with the formation of 2,4,6-tribromophenol when treated with bromine water. The displacement of carboxyl group occurs only when the reaction is carried out in aqueous solution.
Q. 30 (B)

Q. 31 (C)

Q. 32 (D)
(D)

(Ka) $=\mathrm{x}>\mathrm{y}$ (Carboxylate anion stabilized By Hbonding)
(Sol.) $=\mathrm{y}>\mathrm{x}$ (Intermolecular H -bonding in y)
(Vol.) $=x>y$ (Intramolecular H-bonding in x)
(MP) $=\mathrm{y}>\mathrm{x}$ (More symmetrical structure of y)
Q. 34 (A)

Acidic nature of $\mathrm{Ph}-\mathrm{COOH}$ is more than $\mathrm{Ph}-\mathrm{OH}$ than because the stability of conjugate base of $\mathrm{Ph}-$ COOH is more stable than $\mathrm{Ph}-\mathrm{OH}$ and that $\mathrm{Ph}-\mathrm{OH}$ is more than benzyl alcohol $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{OH}$.
Q. 35 (C)
Q. 36 C

Q. 37 D

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (A,B)
 Q. 2 (B,C)

Q. 3 Correct options for the given below reaction :

All above reactions are correct. Reaction A is Koble Schmidt, B is Reimer-Tiemann reaction, C protection of phenolic group at Phenol and D is Laderer-Manase reaction.
Q. 5 (A,C,D)

(P)

Phenol (Q) gives positive test with Br_{2} water.
Q. 6 (A,B,C)
Q. 7 (A,B,C,D)
Q. 8 (A,B,C,D)

All reactions are correct.
Q. 9 (B,C,D)
Q. 10 (B,D)

Q. 11 (B,C,D)

Coupling reaction is shown by benzene diazonium chloride with more activated ring containining compounds. Benzaldehyde having deactivated ring.
Q. 12 (C)
Q. 13 (C)
Q. 14 (B)
Q. 15 (C)
Q. 16 (B)
Q. $17 \quad \begin{aligned} & \text { (A) } \\ & \\ & \\ & \text { (15 to 17) }\end{aligned}$

(Q) Salicylic acid

Q. 18 (A) QS (B) S (C) Q (D) P
Q. 19 (A) S, (B) Q, (C) P, (D) R
Q. 20 (A) Q, (B) R, (C) S, (D) P
Q. 21 (A) R, (B) S, (C) P, (D) Q
Q. 22 (A)-R; (B)-R,S; (C)-P, R, T; (D)-Q
(A)

(B)

(B)

(D)

NUMERICAL VALUE BASED

Q. 1 [3]

In presence of Br_{2} water, phenol ionises to phenoxide in $\overbrace{0}^{\mathrm{O}^{\ominus}}$ which is a strong O - and p directing group. So, both of ortho positions and para position will be brominated simultaneously consuming 3 equivalents of Br_{2}.

Q. 2 [8]

Q. 3 [4]

Q. 4 [3]

Electron withdrawing group will increase the acidity of phenol.
NO_{2} is $\operatorname{EWG}(-\mathrm{I},-\mathrm{R})$
OCH_{3} is EWG at metaposition (- I)
OCH_{3} is electron donating group at para position $(+\mathrm{R}>-\mathrm{I})$
Q. 5 [3]
(I), (II) and (IV) are correct.

Electrophilic substitution is favoured by electron donating group and unfavoured by electron with drawing group.

- $\mathrm{OH}(+\mathrm{R}>-\mathrm{I})$
$-\mathrm{CH}_{3}(+\mathrm{R},+\mathrm{I})(+\mathrm{R})$ of -OH much stronger than
- CH_{3}.

EWG increases acid strength of phenol whereas EDG decreases it.
$-\mathrm{CH}_{3}$ at meta position - (only +I)
$-\mathrm{CH}_{3}$ at para position $-($ both +I and +R)
Reactivity with $\mathrm{Na}\left(1^{\circ}\right.$ alcohol $\left.>2^{\circ}>3^{\circ}\right)$
Ease of esterification (1° alcohol $>2^{\circ}>3^{\circ}$)
Q. 6 [3]

KVPY

PREVIOUS YEAR'S

Q. 1

Q. $2 \quad$ (D)

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (3)

Phenolic OH group does not give substitution reaction as lone pair of oxygen is delocalised with benzene and double bond character in $\mathrm{C}-\mathrm{O}$ bond.
Q. 2 (2)

Q. 3 (1)
Q. 4 (4)

Temperature $=623 \mathrm{~K}$
Pressure $=300 \mathrm{~atm}$

Q. 5

Q. 6
Q. 7
(2)
Q. 8 (2)
Q. 9
Q. 10 (4)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1
 (6)

$\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}\right) \rightarrow$ Gives FeCl_{3} test means Phenol derivative \downarrow
Rotate plane polarized light means optically active

Aldehydes and Ketones (Carbonyl Compounds)

EXERCISES

ELEMENTARY

Q. 1 (1)

active)
Q. 2 (2)

$$
\underset{\text { sp }^{2}}{>\mathrm{C}=\mathrm{C}=\mathrm{O}}
$$

Q. 3 (1)
Q. 4 (2)

Q. 5 (4)
Q. 6 (3)
Q. 7 (2)

Q. 8 (1)
Q. 9 (1)

It is hydration of alkynes.

Q. 10 (2)
Q. 11 (2)

Q. 12 (3)

Q. 13 (1)

Q. 14 (3)

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}+2 \mathrm{Cu}^{+2}+5 \mathrm{OH}^{-} \rightarrow \underset{\operatorname{Red~ppt}}{\mathrm{Cu}_{2} \mathrm{O}}+3 \mathrm{H}_{2} \mathrm{O}
$$

$+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+2 \mathrm{Cu}^{+2}+5 \mathrm{OH}^{-} \rightarrow$ No reaction
Q. 15 (2)

Benzaldehyde on treatment with 50% aqueous or ethanolic alkali solution undergoes Cannizzaro's reaction like HCHO (no α-hydrogen atom) i.e., one molecule is oxidised and one is reduced with the formation of benzoic acid and benzyl alcohol respectively.

Q. 16 (4)

$$
2 \mathrm{HCHO} \xrightarrow[\text { Conc. }]{\mathrm{NaOH}} \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOONa}
$$

It is a Cannizzaro's reaction.

It is aldol condensation reaction.
Q. 17 (2)
Q. 18 (1)

Silver mirror test is the test of aldehyde.
Q. 19 (3)

In cannizaro's reaction the one substance is oxidized and other is reduced.

Q. 20 (3)

Nucleophilic as addition of $\mathrm{HCN}, \mathrm{NaHSO}_{3}$ etc.
Q. 21 (2)

It is Perkin's reaction.
Q. 22 (1)

In HCHO because α-Hydrogen atom is absent.
Q. 23 (4)

Q. 24 (2)

Q. 25 (3)
 nucleophilic addition reaction.
Q. 26 (4)
$2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO} \xrightarrow{50 \% \mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}+$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
It is Cannizzaro's reaction
Q. 27 (2)

Q. 28 (2)
Q. 29 (4)

Fehling solution \Rightarrow Alkaline $\mathrm{CuSO}_{4}+\mathrm{Na}-\mathrm{K}$ tartarate
Tollen's reagent $\Rightarrow \mathrm{NH}_{4} \mathrm{OH}+\mathrm{AgNO}_{3}$
Schiff's reagent $\Rightarrow P$-rosaniline hydrochloride or magneta
Benedict's solution \Rightarrow Alkaline $\mathrm{CuSO}_{4}+$ Citrate ions

All these reagents are used to distinguish between aldehydes and ketones. Aldehydes reacts with all these reagents while ketones do not react.
Q. 30 (1)

$$
\underset{\text { Acetaldehyde }}{\mathrm{CH}_{3} \mathrm{CHO}} \xrightarrow[\text { Oxidation }]{\mathrm{KMnO}_{4}} \underset{\text { Aceetic acid }}{\mathrm{CH}_{3} \mathrm{COOH}}
$$

Q. 31 (4)

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1
(2)

Q. 2 (3)
-I and -M group increase electrophilicity on -CHO group so rate of addition reaction increase and also increases equilibrium constant.
Q. 3 (4)

Q. 4 (2)

It is protection of carbonyl compound.
Q. 5 (2)

As the positive charge decreases and steric hinderance increases on carbonyl group the rate of nucleophilic addition reaction decreases.
Q. 6 (2)

As the positive charge decreases and steric hinderance increases on carbonyl group the rate of nucleophilic addition reaction decreases.
Q. 7 (1)
-I and -M group increase electrophilicity on -CHO group so rate of nuclephilic addition reaction increases.
Q. 8 B

Q. 9 C

Q. 10 (1)

Decreasing Order of reactivity towards N.A.R.
Q. 11 (4)

Q. 18
Q. 17
Q. 15 D

Q. 16 (4)
(lemiacetal)
 streric hindrence)

$$
\begin{equation*}
\mathrm{Ph}-\mathrm{CH}=\mathrm{O}+\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\mathrm{H}} \mathrm{PhCH}=\mathrm{N}-\mathrm{NH}_{2} \text { Hydrazone } \tag{2}
\end{equation*}
$$

Q. 12 (1)

Q. 13 (1)

Q. $14 \quad$ (3)

Q.

Q. 19 (2)

Q. 20 (4)
$\mathrm{H}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{H}$ have no $\alpha-\mathrm{H}$ so do not show aldol Rx^{n}
Q. 21 (2)

Q. 22 (4)

Q. 23 (4)

Aldol addition are proceed in presence of Base catlyst as well as acid catalyst.
Q. 24 (2)

Q. 25 (3)

borh aldehyde having $\alpha-\mathrm{H}$ So 4 product will be formed in which two self and two cross. Product will be obtained.
Q. 26 (4)

Q. 27 (4)

 α-hydrogen absent.Q. 28 (3)

Q. 29 (2)

Corbonyl Comp having no $\alpha-\mathrm{H}$ gives cannizaro Rx^{n}
Q. 30 (4)

Intramolecular aldol reaction -
(i)

Q. 31 (1)

(Intramolecular aldol Reaction)
Q. 32 (1)

Q. 34 (2)

(B)
Q. $35 \quad(1,2,4)$

Compound which have α-hydrogen gives aldol condensation reaction.
Q. 38 (1)

Q. 36 (4) $\mathrm{CH}_{3}-\mathrm{CHO}(\alpha-$ Hydrogen is present $)$.
Q. 37 (1)

-
Q. 40
Q. 39 (3)

Dioxide anion is a better hydride donor, and presence of $-\mathrm{OCH}_{3}$ group further increases the electron density. (3)

Q. 41 (2)

Q. 42 (1)

Q. 43
(2)

Q. 44 (3)

(x) (y)
no 0 - H

(Cross Product) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$ (Self Product) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$

Q. 45 (4)

Q. $46 \quad$ (1)

Cross Cannizzar Reaction
$\xrightarrow[\text { oxidation }]{\mathrm{HCHO}+\mathrm{Ph}-\mathrm{CHO} \xrightarrow[\text { reduction }]{\mathrm{COH} \mathrm{OH}}{ }_{-}^{9} \mathrm{HCOO}}{ }^{\ominus} \mathrm{Na} \stackrel{\oplus}{+} \mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{OH}$
This is Redox Reduction.
Q. 47 (3)

Q. 48 (4)
compound in which $\left[\mathrm{CH}_{3}-\mathrm{C}-\right]$ group is present will react with $\mathrm{NaoI}\left(\mathrm{NaOH}+\mathrm{I}_{2}\right)$
Q. 49 (2)

Q. 50 (3)

Q. 51 (2)

Perkin reaction
$\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH} \xrightarrow[\mathrm{Br}]{\mathrm{HBr}} \mathrm{Ph}-\underset{\left.\right|_{\mathrm{Br}} ^{\mathrm{Cl}} \mathrm{C}}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{COOH}$
Q. 52 (3)

Q. 53 (4)

Q.54(3)

Q. 55 (1)

P.C.C. \rightarrow Pyridine Chloro Cromate
Q. 56 (4)

Q. 57 (4)

Q. 58 (2)

Schiff's reagent is [P rosanilline $+\mathrm{HCl}+\mathrm{SO}_{2}$] which is used for different b / w Aldehyde or Ketone.
Q. 59 (1)

Q. $60 \quad$ (2)

Q. 61 (1)

Q. 62 (3)

Q. 63 (4)
Q. 67 (2)
for base sensitive group clemmesen reduction is used.
Q. 68 (1)

Q. 69 (3)

Q. 70 (2) $\mathrm{CH}_{3}-\mathrm{CHO} \longrightarrow$ negative Lucas test
Q. 71 (2)

JEE-ADVANCED

OBJECTIVE QUESTIONS

$$
\mathrm{CH}_{6} \mathrm{H}_{5}-\mathrm{CHO} \xrightarrow{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{\oplus} \mathrm{OH}^{\ominus} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{COOH}+\mathrm{Ag}, 1 \quad A \quad A}
$$

$$
\mathrm{CH}_{3}-\mathrm{CHO} \xrightarrow{\mathrm{H}} \mathrm{Ch}_{3} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{AgI}
$$

$$
\mathrm{HCOOH} \xrightarrow{\mathrm{H}} \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{AgI}
$$

Q. 64 (4)

Q. 65 (4)

Q. 66 (1)

Q. 3 B

Q. 2 C

Acetal is hydrolysed in acidic Medium so clemmensen reduction is not used.
Q. 4 C

Grignard reagent is stable in THF. Grignard reagent reacts with epoxide hence (B) can't be the answer.
Q. 5 B

Q. 6 A

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\mathrm{O}}{\mathrm{OH}} \underset{\mathrm{C}}{\mathrm{CH}}-\mathrm{CH}_{2}-\ddot{\mathrm{N}}_{2}
$$

Q. 7 D

Beckmanns rearrangement

Q. 8 A

Q. $9 \quad$ B

Q. 10 B

Q. 11 C

Q. 12 A

Q. 13 C

Q. 14 B

Aldol condensation reaction.
Q. 15 D

Q. 16 C

It is an intramolecular cannizzaro reaction.
Q. 17 A

Knoevenagal reaction
Q. 18 B

Q. 19 D

Q. 20 B

Q. 21 (C)
Q. 22 B
 $+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$

Q. 23 C

Q. 24 (C)

In (C) option the given reaction will not yield benzaldehyde.
Q. 25 (C)
esters are not reduced by $\mathrm{NaBH}_{4},>\mathrm{C}=\mathrm{O}$ (carbonyl) change to $-\mathrm{CH}(\mathrm{OH})$ - by use of NaBH_{4}
Q. 26 (B)

due to presence of -OH group
Q. 27
(A)
 due to presence of -COCl group
Q. 28 (D)

In (a), (P) reduces Tollens reagent, since it contains (-CHO) group.
In (b), (P) gives iodoform test, since it contains (MeCO -) group.
In (c), (P) forms dioxime, since it contains (-CHO)

In (d), (P) does not gives cerric ammonium nitrate test, since this test is given by alcohols and (P) does not contain an alcoholic group. So the answer is (D).
Q. 29 (C)
Q. 30 (C)

Acetaldehyde reacts with Tollens, Schiff's, and Fehling's solution but acetone does not. But with H_{2} / Ni both reacts.
Q. 31 (B)
Q. 32 (A)
Q. 33 (B)

(A)
(B)
Q. 34 (C)

Q. 35 (C)

Only C on hydrolysis gives $\mathrm{CH}_{3}-\mathrm{OH}$ and $\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{3}$.
Q. 36 (B)

Q. 37 (B)

Q. 38 (D)

JEE-ADVANCED
MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (AC)

(A) Due to substrate (steric factor)
(B) H bonding in Ph

(C) Cyanohydrin formation is usually reversible

Q. 2 (BCD)

Q. 3 (ABC)
(a) $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{O} \xrightarrow{\mathrm{KCN} / \mathrm{H}_{2} \mathrm{O}}$

Q. 4 (ABCD)

Beckmanns rearrangement
Q. 5 (AB)

Aldehyde and ketone give positive Test with 2, 4 Dinitrophenyl hydrozine.
Q. 6 (ABC)

Haloform reaction
Q. 7 (ABC)

Iodoform test.
Q. 8 (AD)

oxidation of HCHO and reduction of PhCHO
Q. 9 (ABCD)

Q. 10 (ABD)

(A) Perkin reaction
(B) Knoevenagel reaction
(D) Reformatsky reaction
Q. 11 (BD)

Aliphatic Aldehyde and a-hydroxy ketone give red ppt with Fehling solution.

Q. 12 (ABCD)

Aliphetic and Aromatic Aldihyde give silver mirror with Tollen regent

Q. 13 (ABC)

Aldehyde, hemiacetal gives positive poller test
Q. 14 (AD)

$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{C}-\mathrm{CH}_{3}$ gives positive Iodoform test
Q. 15 (AB)

3 Pentanone

Q. 16 (ABC)

Q. 17 (ABD)
(A)

$$
\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{2} \mathrm{Ca}
$$

$\xrightarrow{\Delta}$

(B) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{N} \xrightarrow{\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{MgBr}}$

$\mathrm{H}_{3} \mathrm{O}^{+}$
(C)

(D)

Q. 18
(BD)

Q. 19 (ABC)

Q. 20 (B)

Q. 21 (B)

Q. 22 (B)

Q. 23 (A)

Q. 24 (B)

Migration of phenyl group is rds. (Step II)
Q. 25 (A)

Q. 26 (A)

Q. 27 ((D)

Q. 28 (C)

Q. 29 (D)
$\alpha-\mathrm{H}$ hydrogen is present.
Q. 30 (D)

Q. 31 (D)

Polycarbonyl compound with α hydrogen gives intramolecular aldol condensation reaction in presence of alkaline medium.

Q. 32 (B)

Transfer of H^{-}ion is rds.
Q. 33 (D) All of these

Such aldehyde will from enolate ion, conjugate base of hydrate of aldehyde and also undergo polymerisation.
Q. 34 (C)

Q. 35 (A)

$$
\text { Q. } 36 \quad(\mathrm{~A})
$$

Q. 37 (A)

Q. 38 (A)

Q. 39 (D)

Q. 40 (A)

Q. 41 (A)

Step 'a' is rds.
Q. 42 (C)

Q. 43 (B)

Step 'c' produce most acidic hydrogen due to two halogen atom.
Q. 44 (C)
Q. 45 (C)
Q. 46 (D)
(44 to 46)

(L) |

(M)

Q. 47 (A) - q ; (B) - $\mathrm{p} ;(\mathrm{C})-\mathrm{s}$; (D) -r
(A)

(B)

(C) Perkin's condensation reaction.
(D) Benzil-Benzilic acid rearrangement.
Q. $48 \quad(\mathrm{~A} \rightarrow \mathbf{R}, \mathrm{~B} \rightarrow \mathbf{Q}, \mathbf{C} \rightarrow \mathbf{Q}, \mathbf{D} \rightarrow \mathbf{P}$)
(A) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO} \xrightarrow{\mathrm{NaBH}_{4}} \mathrm{CH}_{2}=\underset{\text { (Allyl alcohal) }}{\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}}$
(B) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}+\mathrm{H}_{2} \mathrm{~N}-\mathrm{Ph} \xrightarrow[-\mathrm{HO}]{\mathrm{H}^{\oplus}} \mathrm{C}_{6} \mathrm{H}_{5}-\underset{\text { (Shiff base) }}{\mathrm{CH}}=\mathrm{Ph}$
(C) $\mathrm{CH}_{3}>\mathrm{C}=\xrightarrow[\mathrm{O}+\mathrm{H}_{2} \mathrm{~N}]{\mathrm{C}_{5}}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3}>\underset{\text { (Shiff base) }}{\mathrm{CH}_{6} \mathrm{H}_{5}}$
(d) $\mathrm{R}-\mathrm{CHO}+2 \mathrm{R}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{H}^{\oplus}}{ }_{\mathrm{H}}^{\mathrm{R}}$
Q. 49 (A) - p,q; (B) - p,r; (C) - q,s ; (D) -r,s
(A)

(B)

(C)

$\xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\mathrm{OH}^{\oplus} / \Delta} \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$
(D)

$\xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\mathrm{OH}^{\ominus} / \Delta} \mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$
Q. $50 \quad \mathrm{~A} \rightarrow \mathbf{P}, \mathrm{~S} ; \mathrm{B} \rightarrow \mathbf{Q}, \mathrm{S} ; \mathrm{C} \rightarrow \mathbf{Q}, \mathrm{S} ; \mathbf{D} \rightarrow \mathbf{R}, \mathrm{S}$
Q. 51 (A) - p, q, s; (B) - p, q, r, s; (C) - p; (D) - q, r, s
(A)

- 1, 4-addition.
- Shows tautomerism as it has two $\alpha-\mathrm{H}$.
- Gives +ve 2, 4-DNP test as the carbonyl group is present.
(B)

- Gives 1, 4-addition.
- Shows tautomerism as it has two $\alpha-\mathrm{H}$.
- Gives +ve tollen's test as it has aldehyde groups.
- + ve 2, 4-dNP test.
(C) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
- It is a conjugated diene and gives 1,4 -addition.

- Shows tautomerism as it has active methylene group ($\alpha-H$).
- +ve tollen's test since -CHO group is present.
- +ve 2, 4-DNP test.
Q. $52 \mathrm{~A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$

(B)

(C)

(D)

Q. 53 (1)-ii, (2)-iii, (3)-iv, (4)-i

Factual
Q. 54 (1)-i, (2)-iii, (3)-ii, (4)-iv

Factual

NUMERICAL VALUE BASED

Q. 1 [2]
Q. 2 [3]
$\mathrm{HCOOH}, \mathrm{CHOCOOH}, \mathrm{CHOCHO}$
Q. 3 [4]
Q. 4 [1]
Q. 5 [2]
Q. 6 [3]
Q. 7 [4]

(Chloroform)
Q. 8 [3]

3 molecules condense
Q. 9 [0]

In decacarbonyl di manganese (O). no carbonyl group is in bridged position.
Q. 10 [3]

Q. 11 The structure of E i
 and B is
 so, $(E-B)=(116-106)=10$

(D)

Q. 12 [8]

$+$

Total structure product $=4$
Total products $=8$
all the four product have geometrical isomers.
Q. 13 [5] (2,3,4,5,6)

(3)

(4)

(5)

(6)

(decreases ring strain)

Q. 14 [2]
 HCHO and RCHO

Q. 15 [6]

Q. 16 [1]
Q. 17 [5]

KVPY

PREVIOUS YEAR'S

Q. 1
 (A)

(A)

(B)

(D)
Q. 2 (C)

Reimer - Tiemann Reaction - Phenol react with CHCl_{3} in presence of NaOH given product
Q. 3 (C)

Q. 4 (A)

Q. 5 (B)
(a)

(b) $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{H}$

(c)

(d)

Q. 6 (B)

Q. 7 (A)

区

Q. 8 (D)

Q. 9 (A)

Q. 10 (B)

Theoritical
Q. 11 (C)

Q. 12 (A)

1 mole $\quad 1$ mole $\quad 1 / 3$ mole
Moles of bromoform produced $=1 / 3$ mole
Q. 17 (A)

Q. 13 (D)

Cannizzaro reaction
Q. 14 (A)

Since NaBH_{4} does not reduce -COOH or
 therefore the correct answer is (A).
Q. 15 (D)

Q. 18 (B)

Q. 16 (D)

Only Aliphatic aldehydes forms a reddish brown precipitate when subjected to Fehling's test.
(A)

(B)

Q. 19

(Halon)

Q. 20 (D)

Q. 21 (A)

Q. 22 (A)

Aldehyde without a-H give Cannizaro reaction.
In Cannizaro reaction alcohol and carboxylic acid salt is formed.

(II)

(V)
$+$

Q. 23 (D)

white P.P.T.

JEE-MAINS

PREVIOUS YEAR'S

Q. 1 (4)

It is intramolecular aldol condensation reaction.

Q. 2 (1)

Q. 3 (1)

reduction of carbonyl compounds.

$$
\begin{array}{ll}
\text { Q. } 4 & \text { (2) } \\
& \mathrm{AgNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{AgOH}+\mathrm{NaNO}_{3} \\
& 2 \mathrm{AgOH} \rightarrow \mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ag}_{2} \mathrm{O}+4 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}+2 \stackrel{\ominus}{\mathrm{O}^{\ominus}} \mathrm{H}
\end{array}
$$

Total $2 \mathrm{e}^{-}$transfer to Tollen's reagent
Q. 5 (3)

As (A) compound given positive tollen's test hence it may consist - CHO (aldehyde group). or it can be HCOOH
So for the given option :
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow{\text { Ozonolysis }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{HCOOH}$
(A)
+ve tollen's
and for other compounds (options):
(1)

(2)

$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3} \xrightarrow{\text { Ozonolysis }} 2 \mathrm{CH}_{3}-\mathrm{COOH}$
(Does not show tollen's test)

Q. 8 (2)

DIBAL can not reduce double bond It can reduce cyclic ester.

Q. 9 (3)

Q. 10 (2)
Q. 11 (4)
Q. 12 (3)
Q. 13 (1)
Q. 14 (1)
Q. 15 (4)
Q. 16 (3)
Q. 17 (3)
Q. 18 (1)
Q. 19 (1)
Q. 20 (3)
Q. 21 (2)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (A-r, s, t); (B-p, s); (C-r, s); (D-q, r)

(D)

Q. 2 (C)

Q. 3 (B)

In decarboxylation, β-carbon acquires δ - charge. Whenever δ - charge is stabilized, decarboxylation becomes simple. In (B), it is stabilized by $-\mathrm{m} \&-\mathrm{I}$ of C $=\mathrm{O}$, which is best amongst the options offered,

Q. 4 (A)

(G)

Q. 5
 Q. 6 (A)

(5 to 6)

I

$\xrightarrow[\mathrm{CH}_{3} \mathrm{COONa}]{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{O}}$
($\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$

Q. 7
Q. $8 \quad$ (A)

Q. 12
Q. 9 (A)

(s)
Q. 10 (C)

(Anilide)
Q. 11 (A)

since $-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ is more basic.
The resulting amide will fail to react further. Had it been possible, imied formation would have occured at both the sites.

also results.
(D)

Substitution reaction of toluene takes place through radical mechanism.

Q. 17 (B, D)

Q. 13 (A

Haloform reaction of acetophenone yields benzoic acid.
Q. 14 (D)

Perkin condensation of benzaldehyde with $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{COOK}$ yields cis and trans form of cinnamic acid.
Q. 15 (A,B,D)

Q. 16 (B)

Q. 18 A, B
(A)

(B)

(C)

is not formed
(D)

o-Xylene is not formed
Q. 19 [12]

